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Abstract

We study two trapped ions coupled to the axial phonon modes of a one-
dimensional Coulomb crystal. This system is formally equivalent to the ‘two
spin-boson’ model with position-dependent couplings. We propose a scheme
to dynamically generate a maximally entangled state of two ions within a
decoherence-free subspace. Here the phononic environment of the trapped
ions, whatever its temperature and number of modes, serves as the entangling
bus. The production of the pure singlet state can be exploited to perform short-
ranged quantum communication which is essential in building up a large-scale
quantum computer.

PACS numbers: 03.67.Hk, 03.67.Pp, 03.67.Bg

(Some figures in this article are in colour only in the electronic version)

The spin-boson model plays an important role in studying open quantum systems in physics
and chemistry [1, 2]. Recently, Porras et al [3] have proposed to use a trapped ion coupled to
a set of collective modes of a one-dimensional (1D) Coulomb crystal such that the spin-boson
model can be realized and studied precisely. This model can be physically realized by shining
a laser on an ion in which two internal states are coupled to a traveling wave [3]. The axial
motional modes of 1D Coulomb crystal act as a phonon bath and provide the Ohmic spectral
density. This paves the way for the experimental studies of the Ohmic spin-boson model in
the low- as well as high-temperature regimes.

In fact, sophisticated techniques have been demonstrated in the manipulation of trapped
ions such as cooling the ions to the motional ground state and detecting the state of the ions
[4]. Besides, Coulomb crystals of ion gases have been observed in Paul [5] and Penning traps
[6] and storage rings [7]. A few dozens of ions separated by several micrometers in a crystal
form have been observed. This provides a promising ground to investigate the spin-boson
model with trapped ions.
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Figure 1. Two ions are coupled to a set of axial phonon modes of the Coulomb chain which is
acted as a harmonic bath.

The work of this paper will be based on the ‘two spin-boson’ model which can be
implemented in a 1D Coulomb crystal. The two spin-boson model is a generalization of
the scheme of the ion-trap spin-boson model of Porras et al [3]. The two ions are now
considered to couple to a set of axial phonon modes of the chain. This phonon bath plays the
role of a common dissipative environment for the two ions (see figure 1). Nevertheless, the
decoherence can be greatly canceled provided that the two ions are prepared in the opposite
spin polarizations and their separation is sufficiently short compared to the correlation length
of the Coulomb chain [8]. It is the so-called subdecoherent space [8, 9] or decoherence-free
subspace (DFS) [10] in which the decoherence can be completely quenched. This is very
useful in protecting qubits if they are encoded as ‘logical qubits’ in two physical qubits [11].

Some studies of the generation of mixed-state entanglement between the two spins in a
common harmonic bath have been performed recently [12]. In this paper, we show that the
phonon bath can mediate maximal entanglement between the two ions within the DFS. This
means that a pure maximally entangled state, with long coherence times, can be generated
even in a ‘noisy’ environment. This robust entangled state could be very useful in the ion-trap
quantum computing, particularly on the issue of its scalability. Indeed, a considerable amount
of effort has been devoted to physical realization of a scalable ion-trap quantum computer [4]
since the first proposal of the quantum computer with trapped ions [13].

We propose to use the ion chain to perform short-ranged quantum communication which
is an important element of building up a large-scale quantum computer. According to the
blueprint of building a large-scale quantum computer, a quantum computer composed of a
number of quantum registers is envisaged [11]. Each quantum register is connected through
a common quantum data bus. Quantum gates can be performed in the individual quantum
registers and the different registers can communicate with each other through some quantum
channels. Typically, this quantum channel will be optical, but alternatives, such as physically
transporting the stationary qubits [14] or otherwise using information propagation in a chain
of qubits [15] are worth studying as they enable one to avoid the issue of interfacing different
types of physical systems.

We consider a situation in which ions in distinct quantum registers (in the veritcal direction)
are arranged in different zones [11] and they are interconnected via a chain of ions (in the
horizontal direction) as shown in figure 2. Ion-trap technology is developing towards storing
ions in multi-trapping zones [16]. Multi-wafer traps have been proposed recently to implement
the ‘X’ [17] and ‘T’ [18] junctions. Thus, the architecture shown in figure 2 is possible. Assume
different places for registers and data bus so that the ‘T’ junction is feasible. The Coulomb ion
chain (the horizontal line in figure 2) is being used as a quantum channel between quantum
registers. For example, the quantum state of any ion in the quantum register can be transmitted
to an ion in the register through transverse phonon modes [19] or the ions can be shuttled
from the data bus to the registers in a ‘T’ junction ion trap [18]. The quantum information
can then be teleported [20] through the ion chain using the entanglement between two ions of
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Figure 2. The quantum registers are placed in different zones (in the vertical direction). The
different quantum registers are connected by a chain of ions which is served as a quantum channel
(in the horizontal direction). An enlarged diagram shows that the quantum state of ions in the
quantum register can be transferred to an ion in the chain (dashed arrow indication). The quantum
information is then transmitted through the channel.

the chain developed in accordance with the scheme of this paper. In this way, the quantum
communication between the different quantum registers can be accomplished. This method
offers an alternative to physical shuttling of ions over long distances (the communication
mechanism here being through the bath provided by the chain of ions). Consequently, the
need for ‘segmented’ electrodes (necessary for shuttling) is also not a requirement in this
method.

We consider N ions arranged in a 1D Coulomb chain. The N ions are confined in a linear
trap and interact with each other via the Coulomb repulsion. The trapping and the Coulomb
potentials are of the form [3, 21, 22]

Vtrap = 1

2
m

N∑
i=1

(
ω2

xx
2
i + ω2

yy
2
i + ω2

zz
2
i

)
,

VCoul =
N∑

i>j

e2√
(xi − xj )2 + (yi − yj )2 + (zi − zj )2

,

where ωα are the trapping frequencies in the direction α = x, y, z; m and e are the mass and
the charge of each ion, respectively. The ions form a linear chain along the z-direction for
ωx,y � ωz. The motion of N ions in the 1D chain is described by collective modes, and the
dispersion relation is subject to the trapping condition. The approximate eigenvalues of the
axial modes can be found as ωn = ωz

√
n(n + 1)/2 for N � 1 [22]. This approximation is

indeed very good for the low axial modes even in a chain of ten ions [22].
The two ions in the 1D Coulomb chain are illuminated by two laser fields individually;

the ions interact with the standing wave [3, 4]. The internal states of two ions in the chain are
then coupled to the axial vibrations of the entire chain. The Hamiltonian of the ions and the
phonon bath reads as (h̄ = 1)

Hion = ω

2

2∑
j=1

σ j
z , (1)

HB =
N∑

n=1

ωnb
†
nbn, (2)
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where ω and σ
j
z are the energy splitting and Pauli operator, ωn and bn are the frequency and

the annihilation operator of the nth phonon mode. The Hamiltonian, in a rotating frame with
the laser frequency ωL, is written as [23]

HL =
2∑

j=1

�

2i

(
σ

j
+ + σ

j
−
)
(eik̃Zj − e−ik̃Zj ), (3)

where � is the standing wave laser Rabi frequency, k̃ is the wave number of the laser,
Zj = ∑

n z̃n(b
†
n eikz′

j + bn e−ikz′
j ) is the position operator of the chain. The parameters k and z̃n

are 2πl/L and 1/
√

2mωn, respectively, for l = 0, 1, 2, . . . , N − 1, L = Na is the length of
the chain, and a is the separation between two neighboring ions [22].

In the Lamb–Dicke limit, the total Hamiltonian can be approximated as [23]

H ≈ �

2

2∑
j=1

σ j
z +

N∑
n=1

⎡
⎣ωnb

†
nbn +

2∑
j=1

σ j
x

(
gj

nb
†
n + gj∗

n bn

)⎤⎦ , (4)

where � = ω − ωL, g
j
n = �k̃z̃n eikz′

j and r = z′
1 − z′

2. It is customary to change the basis as
σx(σz) → σ̃z(σ̃x) to transform as the conventional form of the spin-boson model [1].

The two spin-boson model can be solved exactly if the parameter � is zero [2, 8]. In order
to get more insight, we first study the Hamiltonian H0 in which we set � = 0 in equation (4).
We apply a canonical transformation eS = exp

[∑2
j=1

∑
n σ̃

j
z

(
g

j
nb

†
n − g

j∗
n bn

)/
ωn

]
to the

Hamiltonian H0 [1]. In the rotating frame, the Hamiltonian is written as (we have omitted the
constant term)

H̃0 =
N∑

n=1

ωnb
†
nbn − λσ̃ 1

z σ̃ 2
z , (5)

where λ = 2
∑N

n=1

∣∣g1
n

∣∣2
cos(kr)/ωn. Here we consider that the separation between the two

qubits is sufficiently short compared to the correlation length of the bath so that the two qubits
are effectively coupled to the common bath [8]. Roughly speaking, the correlation length
of the Coulomb chain is about the chain length L if only the low-lying excited modes are
involved. Hence, we can impose a condition that the separation r must be less than the length
of the chain L. If this condition is satisfied and our procedure ensures that only the low-lying
modes are involved, then the two ions will ‘feel’ to interact with the same harmonic bath.

The bath can be characterized by the spectral density function J (ω) = ∑N
n=1 2

∣∣g1
n

∣∣2
δ(ω−

ωn). For a linear Coulomb chain, in the low-lying excitation regime, the spectral density J (ω)

for a single ion has been shown to be Ohmic and subOhmic when interacting with the traveling
wave and the standing wave, respectively [3]. If the ions are equally spaced with a distance a,
then the spectral density of the standing wave has the form for ω � ωz [3],

J (ω) = ηω−1, (6)

where η = �2k̃2/mν and ν =
√

3e2
/
mω2

za
3. The spectral density J (ω) is equal to zero for

ω < ωz. The above spectral density has been justified by Porras et al [3]. Here we remark
that the spectral density is obtained from the eigenvalues of axial modes for the large N limit.
This approximation is valid with the leading order in log N for the finite-size systems such as
about 50 ions [22].

Now we study the dynamics of internal states of trapped ions interacting with a thermal
phonon bath described above. We consider that the trapped ions and the bath are separable
initially, i.e., ρT(0) = ρ(0)⊗ρB, ρ(0) and ρB are the density matrix of the qubits and the
thermal bath, respectively. The thermal bath is in equilibrium and its density matrix is given
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by ρB = e−βHB /ZB , where β = 1/kBT ; kB and T are the Boltzmann constant and the
temperature, respectively, and ZB = Tr e−βHB is the partition function.

The reduced density matrix of the two qubits can be obtained by tracing out the system
of bath, i.e., ρ(t) = TrB[ρT(t)]. The reduced matrix of the two qubits is spanned by the
basis {|1〉 = |11〉, |2〉 = |10〉, |3〉 = |01〉, |4〉 = |00〉}. Since the population number is
conserved for � = 0, the evolution of the diagonal elements of the density matrix is constant:
ρii(t) = ρii(0). The matrix elements satisfy ρij = ρ∗

ji . The non-diagonal matrix element
decays as [8]

ρ12(t) = ρ12(0) e−iφ−−�, ρ13(t) = ρ13(0) e−iφ−−�,

ρ24(t) = ρ24(0) e−iφ+−�, ρ34(t) = ρ34(0) e−iφ+−�,
(7)

where

φ± = ±2λt ±
∫ ∞

0

J (ω)

ω2
coth

(
ω

2kBT

)
sin ωt dω, (8)

� =
∫ ∞

0

J (ω)

ω2
coth

(
ω

2kBT

)
(1 − cos ωt) dω. (9)

The states under the effect of the collective decoherence read as [8]

ρ23(t) = ρ23(0) e−2�− , ρ14(t) = ρ14(0) e−2�+ , (10)

where

�± =
∫ ∞

0

J (ω)

ω2
coth

(
ω

2kBT

)
(1 − cos ωt)[1 ± cos(kr)] dω. (11)

The decay rates of the qubits are dramatically changed due to the collective decoherence.
For the states ρ14 and ρ41, the decay process is greatly enhanced with the decay rate �+.
In contrast, the decay rate of the states ρ23 and ρ32 is largely reduced. In the limit of zero
separation r, the states |01〉 and |10〉 are protected within the DFS [9]. Physically speaking,
the notion of DFS holds if the decay rate of this subspace is comparable or even longer than
the coherence times of the ion. In fact, we can estimate explicitly the coherence lifetime of
this subspace ∼�−1

− which is roughly equal to
(
ηω3

c r
2
/
ω5

zL
2
)−1 1 for low-temperature regime

and ωc is the cut-off frequency. Therefore, the long coherence lifetime can be achieved for
the small separation r � L. For convenience, we have introduced the cut-off frequency ωc

to the spectral density in equation (6) of the form J (ω) = ηω−1 e−ω/ωc since it is legitimate
to perform the adiabatic elimination of the high-frequency modes compared to the tunneling
strength � [1]. Nevertheless, it is required that the cut-off frequency ωc is much greater than
the laser strength � and the thermal energy kBT /h̄ [1]. This treatment helps us to find out the
bound of the integral (see the footnote) and gives a rough estimation for the decaying rate.

Now we investigate the effect of the two local laser fields on the two qubits for a nonzero
tunneling parameter �. The transformed Hamiltonian Ṽ = eSV e−S can be obtained:

Ṽ = �

2

2∑
j=1

(
σ̃

j
+ B

†
j + Bj σ̃

j
−
)
, (12)

where Bj = exp
[∑

n

(
g

j
nb

†
n − g

j∗
n bn

)/
ωn

]
and B

†
1B2 ≈ I for a small separation r.

1 The decay rate �− is bounded by (kcr)
2I for kcr � 1, I = ∫ ∞

0 J (ω)/ω2 coth(ω/2kBT )(1 − cos ωt) dω

and the wave number kc ≈ 2πωc/ωzL is chosen at the cut-off frequency. The bound of integral I �
2η coth(ωz/2kBT )(ωc − ωz)/ω

3
z can be found for the subOhmic spectral density in equation (6).
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We consider the tunneling strength � is much weaker than the spin-bath coupling λ.
This enables us to derive an effective Hamiltonian within the DFS based on the second-order
perturbation theory. The matrix elements of the effective Hamiltonian can be represented as

(H̃eff)mn = −
∑

l

ṼmlṼln

E
(0)
l − (

E
(0)
m + E

(0)
n

)/
2
, (13)

where m and n represent the basis of unperturbed states of σ̃
j
z : {|01〉, |10〉}, and l denotes the

intermediate states {|11〉, |00〉}; E
(0)
l are the eigenenergies of H̃0.

The effective Hamiltonian can be obtained as [24]

H̃eff = κ(J+J− + J−J+), (14)

where κ = �2/8λ and J± = ∑2
j=1 σ̃

j
±. The dynamics within the DFS is governed by this

effective Hamiltonian. The state with the initial state |10〉 evolves

|�(t)〉 = e−2iκt [cos 2κt |10〉 − i sin 2κt |01〉]. (15)

The two qubits become entangled when the two local laser fields are turned on. At the
time t∗ = π/8κ , up to a global phase factor eiπ/4, the quantum state becomes |�(t∗)〉 =
(|10〉 − i|01〉)/√2.

An ideal entangled state is then generated dynamically. Here the spin-coupling strength
can be estimated to be 104–105 Hz

(
λ � �Nω

−1/2
z

)
; for the typical values of the laser Rabi

and trapping frequencies are around several MHz and 105 Hz, respectively [25]. The tunneling
strength, � = ω − ωL, can be adjusted by choosing an appropriate frequency of the laser but
it has to be much smaller than the spin-bath coupling λ. Therefore, the speed of entanglement
formation can be estimated around 103–104 Hz. The rate of entanglement generation can be
increased by a stronger laser. Although the ions are inevitable to the decoherence such as
spontaneous emission [26], we can ignore the other noise sources to the ions. Since the ions
are with long coherence times (up to 100 ms) [27], it is very long compared to the timescale
of entanglement generation.

We note that the entanglement generation shares the same spirit of the Sørensen–Mølmer
entangling gate in which the entanglement gate is implemented by coupling to the virtual
motional states of a ‘single’ center-of-mass (CM) mode [28]. Indeed, the Sørensen–Mølmer
gate has been shown to entangle two 40Ca+ ions with a bichromatic laser [25]. However, it
is inevitable to couple a number of phonon modes for a chain of ions in performing the gate
operation with a traveling wave as considered by Jonathan and Plenio [29]. However, we
have studied a more general scenario by the consideration of position-dependent couplings to
the phonon bath in which the collective decoherence effect sets in. The entanglement can be
efficiently generated within the DFS. The fidelity between the generated and ideal entangled
states |�(t∗)〉 is e−�−(t∗) ≈ 1 − �−(t∗). The rate, �−(t∗), is roughly proportional to the factor
(r/L)2 explicitly (see the footnote). It thus limits the separation for entangling two ions. For
a chain of ions containing 50–100 ions, the high fidelity of the entangled pair can be generated
between the two ions separate from a few ions, say five ions, in the chain.

Having discussed the generation of the entangled state, we proceed to study the quantum
communication between two trapped ions. This can be used to transfer quantum information
between different quantum registers by the implementation of the quantum teleportation
protocol [20]. For instance, we consider to transmit the quantum information from ion i to ion
j . We first generate the entanglement between the ions j and k. Ion k is next to ion i. Then,
we perform the Bell-state measurement between the ions i and k. The quantum teleportation
can thus be accomplished by sending the measurement result to ion j through the classical
communication. It is noteworthy that the range of quantum state transfer should be short in
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our scheme. However, this can be resolved by repeating the quantum teleportation between
two nearby ions several times until the quantum information being transferred to that distant
ion. Alternatively, we can entangle the two distant ions with a relatively low fidelity of the
maximal entanglement. We can apply entanglement purification (if the fidelity is higher than
0.5 [30]) that has been demonstrated in the ion-trap experiment [31]. Our scheme benefits
from without the direct transport of ions.

Additionally, the ion chain can form a cluster state [32] by sequential generation of
entangled states between different pairs of ions, with the entangling of each pair taking place
according to the scheme of this paper, which will be useful for measurement-based quantum
computing.

In conclusion, we have investigated the two ions coupled to axial vibration modes of
the 1D Coulomb chain. This can be shown to be equivalent to the ‘two spin-boson’ model.
We show that the decoherence-free entanglement of two nearby ions can be dynamically
generated. It can be applied to perform short-ranged quantum communication in ion traps
doing away with the necessity of physically shuttling the ions from place to place. The present
result is not confined to the ion traps system and could also benefit other quantum information
processing in solid-state-based systems which can be described by the spin-boson model such
as the Josephson charge qubits of a Cooper-pair box [33] and semiconductor double quantum
dots [34].
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